# Ring and Module Structures on the K-Theory of $C^{*}$-Algebras from Smale Spaces 

Brady Killough<br>Mount Royal University

Smale Space, their groupoids, and $C^{*}$-algebras May 15, 2022

## Overview

- Smale space Preliminaries
- $K$-theory of a commutative $C^{*}$-algebra
- The mapping Cylinder
- Ring and Module Structures
- The SFT case
- Duality for SFT


## Smale space and C*-algebras

- $(X, \varphi)$ a mixing Smale space
- $P$ a finite $\varphi$-invariant subset of $X$
- groupoids $G^{s}(X, \varphi, P), G^{u}(X, \varphi, P), G^{h}(X, \varphi)$,
- $S(X, \varphi, P), U(X, \varphi, P), H(X, \varphi)$ the associated $C^{*}$-algebras
- we consider each of these as subalgebras of $\mathcal{B}\left(I^{2}\left(V^{h}(P)\right)\right)$


## *-automorphism

For $f \in C_{c}(G)$ where $G$ is any one of the three groupoids from the previous slide, we define

$$
\alpha(f)(x, y)=f\left(\varphi^{-1}(x), \varphi^{-1}(y)\right)
$$

$\alpha$ extends to a $*$-automorphism on each of $S(X, \varphi, P), U(X, \varphi, P)$, and $H(X, \varphi)$.

## Assymptotic Commutation Relations

Let $a \in S(X, \varphi, P), b \in U(X, \varphi, P)$, and $f, g \in H(X, \varphi)$. Then

- $a f, f a \in S(X, \varphi, P)$,
- $b f, f b \in U(X, \varphi, P)$,
- $\lim _{n \rightarrow+\infty}\left\|a \alpha^{-n}(f)-\alpha^{-n}(f) a\right\|=0$
- $\lim _{n \rightarrow+\infty}\left\|\alpha^{n}(f) b-b \alpha^{n}(f)\right\|=0$
- $\lim _{n \rightarrow+\infty}\left\|\alpha^{n}(f) \alpha^{-n}(g)-\alpha^{-n}(g) \alpha^{n}(f)\right\|=0$


## K-Theory of a commutative C*-Algebra

- Suppose $A$ is a commutative $C^{*}$-Algebra, $p, q$ projections in $A$. Then $p q=q p$ is a projection in $A$.
- For $p \in \mathbb{M}_{n}(A), p \in \mathbb{M}_{m}(A)$, we define $p \times q \in M_{n m}(A)$ entrywise by $(p \times q)_{(i, j)(k, l)}=p_{i k} q_{k l}$. Then $[p]_{0}[q]_{0}=[p \times q]_{0}$ defines a ring structure on $K_{0}(A)$
- Noting that $C\left(S^{1}, A\right)$ is also commutative, and that $K_{0}\left(C\left(S^{1}, A\right)\right) \cong K_{0}(A) \oplus K_{1}(A)$, we can use the above idea to define a product on $K_{*}(A)$.


## K-Theory of a commutative C*-Algebra

- Suppose $A$ is a commutative $C^{*}$-Algebra, $p, q$ projections in $A$. Then $p q=q p$ is a projection in $A$.
- For $p \in \mathbb{M}_{n}(A), p \in \mathbb{M}_{m}(A)$, we define $p \times q \in M_{n m}(A)$ entrywise by $(p \times q)_{(i, j)(k, l)}=p_{i k} q_{k l}$. Then $[p]_{0}[q]_{0}=[p \times q]_{0}$ defines a ring structure on $K_{0}(A)$
- Noting that $C\left(S^{1}, A\right)$ is also commutative, and that $K_{0}\left(C\left(S^{1}, A\right)\right) \cong K_{0}(A) \oplus K_{1}(A)$, we can use the above idea to define a product on $K_{*}(A)$.
- $K_{*}(A)$ is a commutative ring.


## Back to Smale Spaces

The $C^{*}$-Algebras defined previously are not commutative, but the asymptotic commutation relations are encouraging.

For $p, q \in P_{1}(H(X, \varphi))$, $n$ large, we define

$$
a_{n}=\frac{\alpha^{n}(p) \alpha^{-n}(q)+\alpha^{-n}(q) \alpha^{n}(p)}{2}
$$

Then $a_{n}=a_{n}^{*}\left\|a_{n}^{2}-a_{n}\right\|$ is small, and $\chi_{(1 / 2, \infty)}\left(a_{n}\right)$ is a projection.
Question: Can we define $[p]_{0}[q]_{0}=\lim _{n \rightarrow \infty}\left[a_{n}\right]_{0}$ ?

## Back to Smale Spaces

The $C^{*}$-Algebras defined previously are not commutative, but the asymptotic commutation relations are encouraging.

For $p, q \in P_{1}(H(X, \varphi))$, $n$ large, we define

$$
a_{n}=\frac{\alpha^{n}(p) \alpha^{-n}(q)+\alpha^{-n}(q) \alpha^{n}(p)}{2}
$$

Then $a_{n}=a_{n}^{*},\left\|a_{n}^{2}-a_{n}\right\|$ is small, and $\chi_{(1 / 2, \infty)}\left(a_{n}\right)$ is a projection.
Question: Can we define $[p]_{0}[q]_{0}=\lim _{n \rightarrow \infty}\left[a_{n}\right]_{0}$ ?
No, $a_{n}$ typically depends on $n$, even for arbitrarily large $n$, so $\lim _{n \rightarrow \infty}\left[a_{n}\right]_{0}$ is not well defined.

## The Mapping Cylinder

Consider the mapping cylinder,

- $C(H, \alpha)=\{f: \mathbb{R} \rightarrow H(X, \varphi) \mid f(t+1)=\alpha(f(t)) \forall t\}$, and
- $\alpha_{t}(f)(s)=f(s+t)$ so that $\alpha_{n}(f)(s)=\alpha^{n}(f(s))$ for $n \in \mathbb{Z}$.


## The Mapping Cylinder

Consider the mapping cylinder,

- $C(H, \alpha)=\{f: \mathbb{R} \rightarrow H(X, \varphi) \mid f(t+1)=\alpha(f(t)) \forall t\}$, and
- $\alpha_{t}(f)(s)=f(s+t)$ so that $\alpha_{n}(f)(s)=\alpha^{n}(f(s))$ for $n \in \mathbb{Z}$.

For $f, g \in C(H, \alpha)$ let

$$
(f \times g)_{t}=\frac{\alpha_{t}(f) \alpha_{-t}(g)+\alpha_{-t}(g) \alpha_{t}(f)}{2}
$$

## The Mapping Cylinder

Consider the mapping cylinder,

- $C(H, \alpha)=\{f: \mathbb{R} \rightarrow H(X, \varphi) \mid f(t+1)=\alpha(f(t)) \forall t\}$, and
- $\alpha_{t}(f)(\boldsymbol{s})=f(\boldsymbol{s}+t)$ so that $\alpha_{n}(f)(\boldsymbol{s})=\alpha^{n}(f(s))$ for $n \in \mathbb{Z}$.

For $f, g \in C(H, \alpha)$ let

$$
(f \times g)_{t}=\frac{\alpha_{t}(f) \alpha_{-t}(g)+\alpha_{-t}(g) \alpha_{t}(f)}{2}
$$

For $f \in M_{n}(C(H, \alpha)), g \in M_{m}(C(H, \alpha)),(f \times g)_{t} \in M_{n m}(C(H, \alpha))$ is

$$
\left((f \times g)_{t}\right)_{(j j)\left(i^{\prime} j^{\prime}\right)}=\left(f_{i i^{\prime}} \times g_{j j^{\prime}}\right)_{t}
$$

For $p \in P_{n}(C(H, \alpha)), q \in P_{m}(C(H, \alpha))$, there exists $T$ such that for $t \geq T$

$$
\chi_{(1 / 2, \infty)}(p \times q)_{t} \in P_{n m}(C(H, \alpha)) .
$$

So we get a continuous path of projections and

$$
[p]_{0}[q]_{0}=\lim _{t \rightarrow \infty}\left[(p \times q)_{t}\right]_{0}
$$

is well defined and gives a product on $K_{0}(C(H, \alpha))$.

For $p \in P_{n}(C(H, \alpha)), q \in P_{m}(C(H, \alpha))$, there exists $T$ such that for $t \geq T$

$$
\chi_{(1 / 2, \infty)}(p \times q)_{t} \in P_{n m}(C(H, \alpha)) .
$$

So we get a continuous path of projections and

$$
[p]_{0}[q]_{0}=\lim _{t \rightarrow \infty}\left[(p \times q)_{t}\right]_{0}
$$

is well defined and gives a product on $K_{0}(C(H, \alpha))$.

To define a product on $K_{*}(C(H, \alpha))$ we note that the asymptotically abelian property is inherited by $C\left(S^{1}, C(H, \alpha)\right)$ and consider the split exact sequence

$$
0 \longrightarrow S(C(H, \alpha)) \hookrightarrow C\left(S^{1}, C(H, \alpha)\right) \longrightarrow C(H, \alpha) \longrightarrow 0
$$

so $K_{0}\left(C\left(S^{1}, C(H, \alpha)\right)\right) \cong K_{0}(C(H, \alpha)) \oplus K_{1}(C(H, \alpha))$ and defining a product on $K_{0}\left(C\left(S^{1}, C(H, \alpha)\right)\right)$ (as on the previous slide), then gives a product structure on $K_{*}(C(H, \alpha))$.

To define a product on $K_{*}(C(H, \alpha))$ we note that the asymptotically abelian property is inherited by $C\left(S^{1}, C(H, \alpha)\right)$ and consider the split exact sequence

$$
0 \longrightarrow S(C(H, \alpha)) \hookrightarrow C\left(S^{1}, C(H, \alpha)\right) \longrightarrow C(H, \alpha) \longrightarrow 0
$$

so $K_{0}\left(C\left(S^{1}, C(H, \alpha)\right)\right) \cong K_{0}(C(H, \alpha)) \oplus K_{1}(C(H, \alpha))$ and defining a product on $K_{0}\left(C\left(S^{1}, C(H, \alpha)\right)\right)$ (as on the previous slide), then gives a product structure on $K_{*}(C(H, \alpha))$.

- $K_{*}(C(H, \alpha))$ is a (potentially non-commutative) ring.


## How do we compute $K_{*}(C(H, \alpha))$ ?

$$
0 \longrightarrow S(H(X, \varphi)) \xrightarrow{\iota} C(H, \alpha) \xrightarrow{e_{0}} H(X, \varphi) \rightarrow 0
$$

- $\iota(f)(\boldsymbol{s})=\alpha^{k}(f(\boldsymbol{s}-k))$
- $e_{0}$ : evaluation at 0.

$$
0 \longrightarrow S(H(X, \varphi)) \xrightarrow{\iota} C(H, \alpha) \xrightarrow{e_{0}} H(X, \varphi) \rightarrow 0
$$

- $\iota(f)(s)=\alpha^{k}(f(s-k))$
- $e_{0}$ : evaluation at 0.

$$
\begin{aligned}
& K_{1}(H(X, \varphi)) \cong K_{0}(S(H(X, \varphi))) \longrightarrow K_{0}(C(H, \alpha)) \longrightarrow K_{0}(H(X, \varphi)) \\
& K_{1}(H(X, \varphi)) \longleftarrow K_{1}(C(H, \alpha)) \longleftarrow K_{1}(S(H(X, \varphi))) \cong K_{0}(H(X, \varphi))
\end{aligned}
$$

$$
0 \longrightarrow S(H(X, \varphi)) \xrightarrow{\iota} C(H, \alpha) \xrightarrow{e_{0}} H(X, \varphi) \rightarrow 0
$$

- $\iota(f)(s)=\alpha^{k}(f(s-k))$
- $e_{0}$ : evaluation at 0.


In general, this is difficult.

## Shift of Finite type

If $(X, \varphi)=(\Sigma, \sigma)$ is a SFT, then $H(\Sigma, \sigma)$ is AF, so $K_{1}(H(\Sigma, \sigma))=0$ and we have


## Shift of Finite type

If $(X, \varphi)=(\Sigma, \sigma)$ is a SFT, then $H(\Sigma, \sigma)$ is AF, so $K_{1}(H(\Sigma, \sigma))=0$ and we have


- $K_{0}(C(H, \alpha)) \cong \operatorname{ker}\left(i d-\alpha_{*}\right)$
- $K_{1}(C(H, \alpha)) \cong K_{0}(H(\Sigma, \sigma)) /$ image $\left(i d-\alpha_{*}\right)$


## Inductive Limits

Suppose $\left(\Sigma_{A}, \sigma\right)$ is the edge shift with graph $G=(V, E)$ and adjacency matrix $A$, then $K_{0}\left(H\left(\Sigma_{A}, \sigma\right)\right)$ is the inductive limit of

$$
M_{\# v}(\mathbb{Z}) \xrightarrow{X_{\mapsto A X A}} M_{\# v}(\mathbb{Z}) \xrightarrow{X_{\mapsto A X A}} M_{\# v}(\mathbb{Z}) \longrightarrow \cdots
$$

## Inductive Limits

Suppose $\left(\Sigma_{A}, \sigma\right)$ is the edge shift with graph $G=(V, E)$ and adjacency matrix $A$, then $K_{0}\left(H\left(\Sigma_{A}, \sigma\right)\right)$ is the inductive limit of

$$
\begin{gathered}
M_{\# v}(\mathbb{Z}) \xrightarrow{X \mapsto A X A} M_{\# v}(\mathbb{Z}) \xrightarrow{X \mapsto A X A} M_{\# v}(\mathbb{Z}) \longrightarrow \cdots \\
K_{0}\left(H\left(\Sigma_{A}, \sigma\right)\right) \cong\left(M_{\# v}(\mathbb{Z}) \times \mathbb{N}\right) / \sim
\end{gathered}
$$

- For $n \leq m,(X, n) \sim(Y, m)$ if and only if $A^{m-n+k} X A^{m-n+k}=A^{k} Y A^{k}$ for some $k$.
- We denote the equivalence class $[X, n]$.


## Inductive Limits

Suppose $\left(\Sigma_{A}, \sigma\right)$ is the edge shift with graph $G=(V, E)$ and adjacency matrix $A$, then $K_{0}\left(H\left(\Sigma_{A}, \sigma\right)\right)$ is the inductive limit of

$$
M_{\# v}(\mathbb{Z}) \xrightarrow{X_{\mapsto A X A}} M_{\# v}(\mathbb{Z}) \xrightarrow{X_{\mapsto A X A}} M_{\# v}(\mathbb{Z}) \longrightarrow \cdots
$$

$$
K_{0}\left(H\left(\Sigma_{A}, \sigma\right)\right) \cong\left(M_{\# V}(\mathbb{Z}) \times \mathbb{N}\right) / \sim
$$

- For $n \leq m,(X, n) \sim(Y, m)$ if and only if $A^{m-n+k} X A^{m-n+k}=A^{k} Y A^{k}$ for some $k$.
- We denote the equivalence class $[X, n]$.
- Then $\alpha([X, n])=\left[X A^{2}, n+1\right], \alpha^{-1}([X, n])=\left[A^{2} X, n+1\right]$


## Inductive Limits

Let $C(A)=\left\{X \in M_{\# V}(\mathbb{Z}) \mid A X=X A\right\}$, then

$$
K_{0}(C(H, \alpha)) \cong \operatorname{ker}\left(i d-\alpha_{*}\right) \cong \lim _{\rightarrow} C(A)
$$

## Inductive Limits

Let $C(A)=\left\{X \in M_{\# V}(\mathbb{Z}) \mid A X=X A\right\}$, then

$$
K_{0}(C(H, \alpha)) \cong \operatorname{ker}\left(i d-\alpha_{*}\right) \cong \lim _{\rightarrow} C(A)
$$

Let $B(A)=\left\{X \mid X=Y A-A Y\right.$, for some $\left.Y \in M_{\# V}(\mathbb{Z})\right\}$, then

$$
\lim _{\rightarrow} B(A) \cong \operatorname{image}\left(i d-\alpha_{*}\right) \subset K_{0}\left(H\left(\Sigma_{A}, \sigma\right)\right)
$$

## Inductive Limits

Let $C(A)=\left\{X \in M_{\# V}(\mathbb{Z}) \mid A X=X A\right\}$, then

$$
K_{0}(C(H, \alpha)) \cong \operatorname{ker}\left(i d-\alpha_{*}\right) \cong \lim _{\rightarrow} C(A)
$$

Let $B(A)=\left\{X \mid X=Y A-A Y\right.$, for some $\left.Y \in M_{\# V}(\mathbb{Z})\right\}$, then

$$
\lim _{\rightarrow} B(A) \cong \operatorname{image}\left(i d-\alpha_{*}\right) \subset K_{0}\left(H\left(\Sigma_{A}, \sigma\right)\right)
$$

SO

$$
K_{1}(C(H, \alpha)) \cong K_{0}\left(H\left(\Sigma_{A}, \sigma\right)\right) / \lim _{\rightarrow} B(A) \cong \lim _{\rightarrow}\left(M_{\# V}(\mathbb{Z}) / B(A)\right)
$$

## Product formula

- $K_{0}(C(H, \alpha)):[X, N]$ s.t. $X \in C(A)$
- $K_{1}(C(H, \alpha)):[Y+B(A), M]$


## Product formula

- $K_{0}(C(H, \alpha)):[X, N]$ s.t. $X \in C(A)$
- $K_{1}(C(H, \alpha)):[Y+B(A), M]$

If $\left[X_{1}, N\right],\left[Y_{1}, M\right] \in K_{0}\left(C(H, \alpha),\left[X_{2}+B(A), N\right],\left[Y_{2}+B(A), M\right] \in K_{1}(C(H, \alpha)\right.$, then

- $\left[X_{1}, N\right] *\left[Y_{1}, M\right]=\left[X_{1} Y_{1}, N+M\right]$
- $\left[X_{1}, N\right] *\left[Y_{2}+B(A), M\right]=\left[X_{1} Y_{2}+B(A), N+M\right]$
- $\left[X_{2}+B(A), N\right] *\left[Y_{1}, M\right]=\left[X_{2} Y_{1}+B(A), N+M\right]$
- $\left[X_{2}+B(A), N\right] *\left[Y_{2}+B(A), M\right]=0$


## Product formula

- $K_{0}(C(H, \alpha)):[X, N]$ s.t. $X \in C(A)$
- $K_{1}(C(H, \alpha)):[Y+B(A), M]$

If $\left[X_{1}, N\right],\left[Y_{1}, M\right] \in K_{0}\left(C(H, \alpha),\left[X_{2}+B(A), N\right],\left[Y_{2}+B(A), M\right] \in K_{1}(C(H, \alpha)\right.$, then

- $\left[X_{1}, N\right] *\left[Y_{1}, M\right]=\left[X_{1} Y_{1}, N+M\right]$
- $\left[X_{1}, N\right] *\left[Y_{2}+B(A), M\right]=\left[X_{1} Y_{2}+B(A), N+M\right]$
- $\left[X_{2}+B(A), N\right] *\left[Y_{1}, M\right]=\left[X_{2} Y_{1}+B(A), N+M\right]$
- $\left[X_{2}+B(A), N\right] *\left[Y_{2}+B(A), M\right]=0$

$$
\begin{aligned}
\left(\left[X_{1}, N\right]+\left[X_{2}+B(A), N\right]\right) & *\left(\left[Y_{1}, M\right]+\left[Y_{2}+B(A), M\right]\right) \\
& =\left[X_{1} Y_{1}, N+M\right]+\left[X_{1} Y_{2}+X_{2} Y_{1}+B(A), N+M\right]
\end{aligned}
$$

## Example

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \text { Then } C(A) \text { is spanned by } \\
& X_{1}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], X_{2}=\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right], X_{3}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & -1 & 0 \\
-1 & 1 & 0
\end{array}\right], X_{4}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right] \\
& X_{5}=I \\
& 0 \longrightarrow \mathbb{Z}^{4} \longrightarrow K_{0}(C(H, \alpha) \longrightarrow \mathbb{Z}[1 / 2] \longrightarrow 0
\end{aligned}
$$

$<X_{1}, X_{2}, X_{3}, X_{4}>\cong \mathbb{Z}^{4}$ is a non-commutative ideal in $K_{0}(C(H, \alpha)$.

## $K_{0}(S), K_{0}(U)$

- $K_{0}\left(S\left(\Sigma_{A}, \sigma\right)\right):$

$$
\mathbb{Z}^{\# V(G)} \xrightarrow{V \mapsto V A} \mathbb{Z}^{\# V(G)} \xrightarrow{V \mapsto V A} \mathbb{Z}^{\# V(G)} \longrightarrow \cdots
$$

$\alpha[v, N]=[v A, N], \alpha^{-1}[v, N]=[v, N+1]$,

- $K_{0}\left(U\left(\Sigma_{A}, \sigma\right)\right)$ :

$$
\mathbb{Z}^{\# V(G)} \xrightarrow{V \mapsto A v} \mathbb{Z}^{\# V(G)} \xrightarrow{V \mapsto A v} \mathbb{Z}^{\# V(G)} \longrightarrow \cdots
$$

$\alpha[w, M]=[w, M+1], \alpha^{-1}[w, M]=[A w, M]$

## Module Structure

Let $[X, N] \in K_{0}\left(C(H, \alpha), \quad[v, M] \in K_{0}\left(S\left(\Sigma_{A}, \sigma\right)\right), \quad[w, M] \in K_{0}\left(U\left(\Sigma_{A}, \sigma\right)\right)\right.$, then

- $[v, M] *[X, N]=[v X, M+2 N]$
- $[X, N] *[w, M]=[X w, M+2 N]$


## Dual Modules

$$
\begin{aligned}
\text { For } & {[v, M] \in K_{0}\left(S\left(\Sigma_{A}, \sigma\right)\right) } \\
& \text { - } \alpha[v, M]=[v A, M]=[v, M] *[A, 0] \\
& \text { - } \alpha^{-1}[v, M]=[v, M+1]=[v A, M+2]=[v, M] *[A, 1]
\end{aligned}
$$

## Dual Modules

$$
\begin{aligned}
\text { For } & {[v, M] \in K_{0}\left(S\left(\Sigma_{A}, \sigma\right)\right) } \\
& \text { - } \alpha[v, M]=[v A, M]=[v, M] *[A, 0] \\
& \text { - } \alpha^{-1}[v, M]=[v, M+1]=[v A, M+2]=[v, M] *[A, 1]
\end{aligned}
$$

Let $R$ be the subring generated by $[A, 0],[A, 1]$. Then

$$
\operatorname{Hom}_{R}\left(K_{0}\left(S\left(\Sigma_{A}, \sigma\right)\right), R\right) \cong K_{0}\left(U\left(\Sigma_{A}, \sigma\right)\right)
$$

